English

Evaluate the Following Integrals: ∫ X 2 ( a 2 − X 2 ) S F R a C 3 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
Sum

Solution

\[\text{Let I }= \int\frac{x^2}{\left( a^2 - x^2 \right)^ {3/2}}dx\]

\[ \text{Let x }= a \cos\theta\]

`" On differentiating  both  sides, we get " `

`dx = - a sin  θ  dθ `

` ∴ I =  ∫   {a^2cos^2θ} /( a^2 - a^2cos^2 θ )^{3 /2}  ×- a sin  θ  dθ `

`  =  -  ∫   {a^3 cos^2θ  sinθ  } /( a^3 (1 - cos^2 θ )^{3 /2} dθ`

`  =  -  ∫   {cos^2θ   sin θ  } /( sin^3 θ ) dθ`

`  =  -  ∫   cot^2 θ  dθ`

 

\[ = - \int\left( \ cose c^2 \theta - 1 \right) d\theta\]

\[ = - \left( - \cot\theta - \theta \right) + c\]

\[ = \cot\theta + \theta + c\]

\[ = \cot\left( \cos^{- 1} \frac{x}{a} \right) + \cos^{- 1} \frac{x}{a} + c\]

\[ = \cot\left( \cot^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) + \cos^{- 1} \frac{x}{a} + c\]

\[ = \frac{x}{\sqrt{a^2 - x^2}} + \cos^{- 1} \frac{x}{a} + c\]

` Hence, ∫  x^2 /( a^2  - x^2) ^{3/2}dx   = x / \sqrt {a^2-x^2}  + cos ^-1   x/a  + c `

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.13 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.13 | Q 1 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x \cos x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×