Advertisements
Advertisements
Question
\[\int\frac{1}{e^x + e^{- x}} dx\]
Sum
Solution
\[\text{ Let I }= \int\frac{1}{e^x + e^{- x}}\text{ dx }\]
\[ = \int\frac{dx}{e^x + \frac{1}{e^x}}\]
\[ = \int\frac{e^x dx}{e^{2x} + 1}\]
\[ = \int\frac{e^x dx}{\left( e^x \right)^2 + 1}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + 1}\]
\[ = \tan^{- 1} t + C ..............\left( \because \int\frac{dt}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \tan^{- 1} e^x + C............. \left( \because t = e^x \right)\]
\[ = \int\frac{dx}{e^x + \frac{1}{e^x}}\]
\[ = \int\frac{e^x dx}{e^{2x} + 1}\]
\[ = \int\frac{e^x dx}{\left( e^x \right)^2 + 1}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + 1}\]
\[ = \tan^{- 1} t + C ..............\left( \because \int\frac{dt}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \tan^{- 1} e^x + C............. \left( \because t = e^x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]