Advertisements
Advertisements
Question
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
Sum
Solution
\[\text{ We have, }\]
\[I = \int\frac{e^x - 1}{e^x + 1}dx\]
\[ = \int\frac{2 e^x - \left( e^x + 1 \right)}{e^x + 1}dx\]
\[ = \int\frac{2 e^x}{e^x + 1}dx - \int dx\]
\[\text{ Putting e}^x + 1 = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{2}{t}dt - \int dx\]
\[ = 2 \text{ log } \left| t \right| - x + C\]
\[ = 2 \text{ log} \left| e^x + 1 \right| - x + C\]
\[ = 2 \text{ log }\left( e^x + 1 \right) - x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
` ∫ tan^5 x dx `
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]