English

∫ Sin X − Cos X √ Sin 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 
Sum

Solution

\[\text{ Let I } = \int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[\text{ Putting sin x +  cos x = t}\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right) dx = - dt\]
\[\text{ Also  sin x +  cos x = t}\]
\[\text{ Squaring both sides,} \]
\[ \left( \sin x + \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x + 2 \sin x \cos x = t^2 \]
\[ \Rightarrow 1 + \text{ sin  2x }= t^2 \]
\[ \Rightarrow \text{  sin  2x} = t^2 - 1\]
\[ \therefore I = \int\frac{- dt}{\sqrt{t^2 - 1}}\]
\[ = - \text{ ln} \left| t + \sqrt{t^2 - 1} \right| + C ..........\left( \because \int\frac{dt}{\sqrt{x^2 - a^2}} = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right)\]
\[ = - \text{ ln} \left| \left( \sin x + \cos x \right) + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C ..........\left( \because t = \sin x + \cos x \right)\]
\[ = - \text{ ln }\left| \left( \sin x + \cos x \right) + \sqrt{\sin^2 x + \cos^2 x + 2 \sin \cos x - 1} \right| + C\]
\[ = - \text{ ln }\left| \sin x + \cos x + \sqrt{\sin 2 x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 23 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×