English

∫ X 2 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \left( \frac{x^2 \tan^{- 1} x}{1 + x^2} \right)dx\]
\[ = \int \left( \frac{x^2 + 1 - 1}{x^2 + 1} \right) \tan^{- 1} \text{ x dx }\]
\[ = \int \left( 1 - \frac{1}{x^2 + 1} \right) \tan^{- 1}\text{  x dx }\]
\[ = \int 1_{II} . \tan^{- 1}_I \text{ x dx } - \int \frac{\tan^{- 1} x}{x^2 + 1} \text{ dx}\]


\[ = \left[ \tan^{- 1} x\int1\text{ dx }- \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx } \right\} \text{ dx }\right] - \int \frac{\tan^{- 1} x}{x^2 + 1}dx\]
\[ = t\left[ {an}^{- 1} x \times x - \int\frac{x}{1 + x^2}dx \right] - \int\frac{\tan^{- 1} x}{x^2 + 1}dx\]
`  " Putting x"^2" + 1 = t in the first integral and tan"^{- 1}" x = p in the second integral " `
\[ \Rightarrow \text{ 2x dx }= dt \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2} \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \therefore I = \tan^{- 1} x . x - \frac{1}{2}\int \frac{dt}{t} - \int p . dp\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln} \left| t \right| - \frac{p^2}{2} + C\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln }\left| 1 + x^2 \right| - \frac{\left( \tan^{- 1} x \right)^2}{2} + C \left[ \because t = x^2 + 1 \text{ and } p = \tan^{- 1} x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 40 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×