English

Find ∫ 2 X ( X 2 + 1 ) ( X 2 + 2 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
Sum

Solution

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\text{Let }x^2 = y\]
\[ \Rightarrow 2xdx = dy\]
\[ \Rightarrow dx = \frac{dy}{2x}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[ = \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2}\]
\[\text{Let }\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{A}{y + 1} + \frac{B}{y + 2} + \frac{C}{\left( y + 2 \right)^2} . . . . . \left( 1 \right)\]
\[ \Rightarrow 1 = A \left( y + 2 \right)^2 + B\left( y + 1 \right)\left( y + 2 \right) + C\left( y + 1 \right) . . . . . \left( 2 \right)\]
\[\text{Putting y = - 2 in (2)}\]
\[1 = C\left( - 2 + 1 \right)\]
\[ \Rightarrow C = - 1\]

\[\text{Putting y = - 1 in (2)}\]
\[1 = A \left( - 1 + 2 \right)^2 \]
\[ \Rightarrow 1 = A\left( 1 \right)\]
\[ \Rightarrow A = 1\]

\[\text{Putting y = 0 in (2)}\]
\[1 = 4A + B\left( 2 \right) + C\]
\[ \Rightarrow 1 = 4 + 2B - 1\]
\[ \Rightarrow 1 = 3 + 2B\]
\[ \Rightarrow - 2 = 2B\]
\[ \Rightarrow B = - 1\]

\[\text{Substituting the values of A, B and C in (1)}\]

\[\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{1}{y + 1} - \frac{1}{y + 2} - \frac{1}{\left( y + 2 \right)^2}\]
\[ \Rightarrow \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2} = \int\frac{dy}{y + 1} - \int\frac{dy}{y + 2} - \int\frac{dy}{\left( y + 2 \right)^2}\]
\[ = \log\left| y + 1 \right| - \log\left| y + 2 \right| + \frac{1}{y + 2} + C\]

\[\text{Hence, }\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx= \log\left| x^2 + 1 \right| - \log\left| x^2 + 2 \right| + \frac{1}{x^2 + 2} + C\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 56 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^5 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×