English

If F' (X) = a Sin X + B Cos X and F' (0) = 4, F(0) = 3, F ( π 2 ) = 5, Find F(X) - Mathematics

Advertisements
Advertisements

Question

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 
Sum

Solution

\[f'\left( x \right) = a \ sin  x + b \cos x\]
\[f'\left( 0 \right) = 4, f\left( 0 \right) = 3\]
\[f\left( \frac{\pi}{2} \right) = 5\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[\int{f}'\left( x \right)dx = \int\left( a \sin x + b \cos x \right)dx\]
\[f\left( x \right) = - a \cos x + b \sin x + C . . . (i)\]
\[Now puting x = 0 in equation (i)\]
\[f\left( 0 \right) = - a \cos 0 + b \sin 0 + C\]
\[3 = - a \times 1 + b \times 0 + C\]
\[3 = - a + C . . . \left( ii \right)\]
\[\text{Now puting x} = \frac{\pi}{2} \text{in equation} (i)\]
\[f\left( \frac{\pi}{2} \right) = - a \cos \frac{\pi}{2} + b \sin \frac{\pi}{2} + C\]
\[5 = - a \cos\frac{\pi}{2} + b \sin \left( \frac{\pi}{2} \right) + C\]
\[5 = - a \times 0 + b \times 1 + C\]
\[5 = b + C . . . \left( iii \right)\]
\[\text{We also have }f'\left( 0 \right) = 4\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[f'\left( 0 \right) = a \sin 0 + b \cos 0\]
\[4 = a \times 0 + b \times 1\]
\[4 = b . . . \left( iv \right)\]
\[\text{solving} \left( ii \right), \left( iii \right) and \left( iv \right) \text{we get}, \]
\[b = 4\]
\[C = 1\]
\[a = - 2\]
\[ \therefore f\left( x \right) = 2\cos x + 4 \sin x + 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 48 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×