English

∫ √ 1 + X X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\sqrt{\frac{1 + x}{x}}dx\]

\[ = \int\frac{\sqrt{1 + x}}{\sqrt{x}} \times \frac{\sqrt{1 + x}}{\sqrt{1 + x}}dx\]

\[ = \int\left( \frac{1 + x}{\sqrt{x^2 + x}} \right)dx\]

\[\text{ Let  x }+ 1 = A\frac{d}{dx}\left( x^2 + x \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 1 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and  A + B = 1 }\]

\[ \Rightarrow \frac{1}{2} + B = 1\]

\[ \therefore B = \frac{1}{2}\]

\[ \therefore I = \int\frac{\left( x + 1 \right)}{\sqrt{x^2 + x}}dx\]

\[ = \int\left( \frac{\frac{1}{2} \left( 2x + 1 \right) + \frac{1}{2}}{\sqrt{x^2 + x}} \right)dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)}{\sqrt{x^2 + x}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x}}dx\]

\[\text{ Putting x}^2 + x = t\]

\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2} \times 2 \sqrt{t} + \frac{1}{2} \text{ ln }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C............ \left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ ln} \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + C\]

\[ = \sqrt{x^2 + x} + \frac{1}{2} \text{ ln} \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| + C................... \left[ \because t = x^2 + x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 53 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×