English

∫ Cos 3 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cos^3 \sqrt{x}\ dx\]
Sum

Solution

\[\text{ Let, I } = \int \cos^3 \sqrt{x} \text{ dx } . . . . . \left( 1 \right)\]
\[\text{ Consider, }\sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} dt\]
\[ \Rightarrow dx = 2t dt\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \cos^3 \text{ t  2t  dt }\]
\[ = 2\int t  \text{ cos}^3\text{  t   dt}\]
\[ = 2\int \text{ t }\left( \frac{3\cos t + \cos3t}{4} \right) dt \left( \text{ Since,} \cos 3A = 4 \cos^3 A - 3\cos  A \right)\]
\[ = \frac{3}{2}\int \text{ t  cos  t  dt } + \frac{1}{2}\int t \text{ cos  3t  dt }\]
\[ = \frac{3}{2}\left[ t\int \text{ cos t dt } - \int\left( \frac{d t}{d t}\int\text{ cos  t  dt } \right)dt \right] + \frac{1}{2}\left[ t\int \text{ cos  3t  dt }- \int\left( \frac{d t}{d t}\int\text{ cos 3t  dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ t \text{ sin  t }- \int\text{ sin  t  dt } \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} - \frac{1}{3}\int\text{ sin  3t  dt } \right]\]
\[ = \frac{3}{2}\left[ t \sin t + \cos t \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} + \frac{1}{9}\cos 3t \right] + C\]
\[ = \frac{3}{2}t \sin t + \frac{3}{2}\cos t + \frac{1}{6}t \sin3t + \frac{1}{18}\cos3t + C\]
\[ = \frac{3}{2}\sqrt{x}\sin\sqrt{x} + \frac{3}{2}\cos\sqrt{x} + \frac{1}{6}\sqrt{x}\sin\left( 3\sqrt{x} \right) + \frac{1}{18}\cos\left( 3\sqrt{x} \right) + C\]

Note: The final answer in indefinite integration may vary based on the integration constant.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 55 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×