Advertisements
Advertisements
Question
Solution
\[\text{ Let, I } = \int \cos^3 \sqrt{x} \text{ dx } . . . . . \left( 1 \right)\]
\[\text{ Consider, }\sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} dt\]
\[ \Rightarrow dx = 2t dt\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \cos^3 \text{ t 2t dt }\]
\[ = 2\int t \text{ cos}^3\text{ t dt}\]
\[ = 2\int \text{ t }\left( \frac{3\cos t + \cos3t}{4} \right) dt \left( \text{ Since,} \cos 3A = 4 \cos^3 A - 3\cos A \right)\]
\[ = \frac{3}{2}\int \text{ t cos t dt } + \frac{1}{2}\int t \text{ cos 3t dt }\]
\[ = \frac{3}{2}\left[ t\int \text{ cos t dt } - \int\left( \frac{d t}{d t}\int\text{ cos t dt } \right)dt \right] + \frac{1}{2}\left[ t\int \text{ cos 3t dt }- \int\left( \frac{d t}{d t}\int\text{ cos 3t dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ t \text{ sin t }- \int\text{ sin t dt } \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} - \frac{1}{3}\int\text{ sin 3t dt } \right]\]
\[ = \frac{3}{2}\left[ t \sin t + \cos t \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} + \frac{1}{9}\cos 3t \right] + C\]
\[ = \frac{3}{2}t \sin t + \frac{3}{2}\cos t + \frac{1}{6}t \sin3t + \frac{1}{18}\cos3t + C\]
\[ = \frac{3}{2}\sqrt{x}\sin\sqrt{x} + \frac{3}{2}\cos\sqrt{x} + \frac{1}{6}\sqrt{x}\sin\left( 3\sqrt{x} \right) + \frac{1}{18}\cos\left( 3\sqrt{x} \right) + C\]
Note: The final answer in indefinite integration may vary based on the integration constant.
APPEARS IN
RELATED QUESTIONS
\[\int \tan^2 \left( 2x - 3 \right) dx\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`