English

∫ 1 ( 2 X 2 + 3 ) √ X 2 − 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
Sum

Solution

\[\text{ We have,} \]
\[I = \int\frac{dx}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{2}{t^2} + 3 \right) \sqrt{\frac{1}{t^2} - 4}}\]
\[ = \int\frac{- \frac{1}{t^2} dt}{\frac{\left( 2 + 3 t^2 \right)}{t^2} \times \frac{\sqrt{1 - 4 t^2}}{t}}\]
\[ = - \int\frac{t\text{ dt}}{\left( 2 + 3 t^2 \right) \sqrt{1 - 4 t^2}}\]
\[\text{ Again  Putting 1 }- 4 t^2 = u^2 \]
\[ \Rightarrow - 8t \text{ dt } = 2u\text{  du}\]
\[ \Rightarrow t \text{ dt} = - \frac{u}{4} \text{ du }\]
\[ \therefore I = \frac{1}{4}\int\frac{u\text{  du}}{\left[ 2 + 3 \left( \frac{1 - u^2}{4} \right) \right] u}\]
\[ = \frac{1}{4}\int\frac{4 \text{ du}}{\left[ 8 + 3 - 3 u^2 \right]}\]
\[ = \int\frac{du}{11 - 3 u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\frac{11}{3} - u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\left( \sqrt{\frac{11}{3}} \right)^2 - u^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{\sqrt{11}}{\sqrt{3}}} \text{ log} \left| \frac{\frac{\sqrt{11}}{\sqrt{3}} + u}{\frac{\sqrt{11}}{\sqrt{3}} - \text{ u}}
\right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3} \text{ u}}{\sqrt{11} - \sqrt{3} \text{ u}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11} + \sqrt{3} \sqrt{1 - 4 t^2}}{\sqrt{11} - \sqrt{3} \sqrt{1 - 4 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - 12 t^2}}{\sqrt{11} - \sqrt{3 - 12 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - \frac{12}{x^2}}}{\sqrt{11} - \sqrt{3 - \frac{12}{x^2}}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11}x + \sqrt{3 x^2 - 12}}{\sqrt{11}x - \sqrt{3 x^2 - 12}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 13 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×