Advertisements
Advertisements
Question
\[\int2 x^3 e^{x^2} dx\]
Sum
Solution
\[\int2 x^3 \cdot e^{x^2} dx\]
\[ = \int x^2 \cdot \left( e^{x^2} \right) \cdot \text{ 2x dx }\]
` \text{ Let } x^2" = t `
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ = \int t_I \cdot {e_{II}}^t dt\]
\[ = t \cdot e^t - \int1 \cdot e^t dt\]
\[ = \text{ t e}^t - e^t + C\]
\[ = \text{ x}^2 \text{ e}^{x^2} - e^{x^2} + C\]
\[ = e^{x^2} \left( x^2 - 1 \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \tan^5 x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sec^4 x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]