English

∫ 2 X 3 E X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int2 x^3 e^{x^2} dx\]
Sum

Solution

\[\int2 x^3 \cdot e^{x^2} dx\]
\[ = \int x^2 \cdot \left( e^{x^2} \right) \cdot \text{ 2x dx }\]
`  \text{  Let }  x^2" = t `

\[ \Rightarrow \text{ 2x dx } = dt\]
\[ = \int t_I \cdot {e_{II}}^t dt\]
\[ = t \cdot e^t - \int1 \cdot e^t dt\]
\[ =  \text{ t   e}^t - e^t + C\]
\[ = \text{ x}^2   \text{ e}^{x^2} - e^{x^2} + C\]
\[ = e^{x^2} \left( x^2 - 1 \right) + C\]

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 17 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^5 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sec^4 x\ dx\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×