English

Integrate the Following Integrals: ∫ Sin 2 X Sin 4 X Sin 6 X D X - Mathematics

Advertisements
Advertisements

Question

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
Sum

Solution

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]
`= 1/2 ∫ (2   sin  2x   sin 4x )   sin 6x  dx `
\[ =  \frac{1}{2}\int\left[ \text{cos}\left( 2x - 4x \right) - \text{cos}\left( 2x + 4x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\int\left[ \text{cos}\left( 2x \right) - \text{cos}\left( 6x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\left[ \int\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int2\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ \text{sin}\left( 2x + 6x \right) - \text{sin}\left( 2x - 6x \right) \right] dx - \int\text{sin}\left( 12x \right) dx \right\}\]
\[ = \frac{1}{4}\left[ \int\text{sin}\left( 8x \right) dx + \int\text{sin}\left( 4x \right) dx - \int\text{sin}\left( 12x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \frac{- \text{cos}\left( 8x \right)}{8} + \frac{- \text{cos}\left( 4x \right)}{4} + \frac{\text{cos}\left( 12x \right)}{12} \right] + c\]
\[ = - \frac{\text{cos}\left( 8x \right)}{32} - \frac{\text{cos}\left( 4x \right)}{16} + \frac{\text{cos}\left( 12x \right)}{48} + c\]

Hence, \[\int\text{sin  2x   sin 4x    sin 6x   dx }= - \frac{\cos\left( 8x \right)}{32} - \frac{\cos\left( 4x \right)}{16} + \frac{\cos\left( 12x \right)}{48} + c\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.07 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.07 | Q 5 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×