Advertisements
Advertisements
Question
Integrate the following integrals:
Solution
\[\int\text{sin 2x sin 4x sin 6x dx} \]
`= 1/2 ∫ (2 sin 2x sin 4x ) sin 6x dx `
\[ = \frac{1}{2}\int\left[ \text{cos}\left( 2x - 4x \right) - \text{cos}\left( 2x + 4x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\int\left[ \text{cos}\left( 2x \right) - \text{cos}\left( 6x \right) \right] \text{sin 6x dx}\]
\[ = \frac{1}{2}\left[ \int\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2\text{cos}\left( 2x \right)\text{sin}\left( 6x \right) dx - \int2\text{cos}\left( 6x \right)\text{sin}\left( 6x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ \text{sin}\left( 2x + 6x \right) - \text{sin}\left( 2x - 6x \right) \right] dx - \int\text{sin}\left( 12x \right) dx \right\}\]
\[ = \frac{1}{4}\left[ \int\text{sin}\left( 8x \right) dx + \int\text{sin}\left( 4x \right) dx - \int\text{sin}\left( 12x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \frac{- \text{cos}\left( 8x \right)}{8} + \frac{- \text{cos}\left( 4x \right)}{4} + \frac{\text{cos}\left( 12x \right)}{12} \right] + c\]
\[ = - \frac{\text{cos}\left( 8x \right)}{32} - \frac{\text{cos}\left( 4x \right)}{16} + \frac{\text{cos}\left( 12x \right)}{48} + c\]
Hence, \[\int\text{sin 2x sin 4x sin 6x dx }= - \frac{\cos\left( 8x \right)}{32} - \frac{\cos\left( 4x \right)}{16} + \frac{\cos\left( 12x \right)}{48} + c\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Evaluate the following integral:
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`