English

Integrate the Following Integrals: ∫ S I N X Cos 2 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
Sum

Solution

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
` = 1/2  ∫   ( 2  sin x  cos  2x)  sin 3x  dx` 
\[ = \frac{1}{2}\int\left[ \text{sin}\left( x + 2x \right) + \text{sin}\left( x - 2x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\int\left[ \text{sin}\left( 3x \right) - \text{sin}\left( x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\left[ \int \text{sin}^2 \left( 3x \right) dx - \int\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2 \text{sin}^2 \left( 3x \right) dx - \int2\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ 1 - \text{cos}\left( 6x \right) \right] dx - \int\left[ \text{cos}\left( x - 3x \right) - \text{cos}\left( x + 3x \right) \right] dx \right\}\]
\[ = \frac{1}{4}\left[ \int1 dx - \int\text{cos}\left( 6x \right) dx - \int\text{cos}\left( 2x \right) dx + \int\text{cos}\left( 4x \right) dx \right]\]
\[ = \frac{1}{4}\left[ x - \frac{\text{sin}\left( 6x \right)}{6} - \frac{\text{sin}\left( 2x \right)}{2} + \frac{\text{sin}\left( 4x \right)}{4} \right] + c\]
\[ = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

Hence, 

\[\int\text{ sin}\text{ x }\text{cos 2x   sin 3x}\ dx = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.07 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.07 | Q 6 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×