मराठी

Integrate the Following Integrals: ∫ S I N X Cos 2 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
बेरीज

उत्तर

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
` = 1/2  ∫   ( 2  sin x  cos  2x)  sin 3x  dx` 
\[ = \frac{1}{2}\int\left[ \text{sin}\left( x + 2x \right) + \text{sin}\left( x - 2x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\int\left[ \text{sin}\left( 3x \right) - \text{sin}\left( x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\left[ \int \text{sin}^2 \left( 3x \right) dx - \int\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2 \text{sin}^2 \left( 3x \right) dx - \int2\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ 1 - \text{cos}\left( 6x \right) \right] dx - \int\left[ \text{cos}\left( x - 3x \right) - \text{cos}\left( x + 3x \right) \right] dx \right\}\]
\[ = \frac{1}{4}\left[ \int1 dx - \int\text{cos}\left( 6x \right) dx - \int\text{cos}\left( 2x \right) dx + \int\text{cos}\left( 4x \right) dx \right]\]
\[ = \frac{1}{4}\left[ x - \frac{\text{sin}\left( 6x \right)}{6} - \frac{\text{sin}\left( 2x \right)}{2} + \frac{\text{sin}\left( 4x \right)}{4} \right] + c\]
\[ = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

Hence, 

\[\int\text{ sin}\text{ x }\text{cos 2x   sin 3x}\ dx = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.07 | Q 6 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \cos^3 x\ dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×