मराठी

∫ 1 √ 1 + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
बेरीज

उत्तर

\[\int\frac{1}{\sqrt{1 + \ cosx}}dx\]

\[ = \int\frac{1}{\sqrt{2 \cos^2 \frac{x}{2}}}dx\]

\[ = \frac{1}{\sqrt{2}}\int\sec\frac{x}{2}\text{ dx}\]

\[ = \frac{1}{\sqrt{2}} \times \text{2 }\text{ln }\left| \tan\frac{x}{2} + \sec\frac{x}{2} \right| + C\]

`= \sqrt2  In  |  {1 + sin ^ {x/2 }}/{cos ^{x/2}} | + C `

`= \sqrt2  In  | (( \text{sin} x/4 + \text{cos} x/4)^2  )/((cos^2  x /4  - \text{sin}^2 x /4 ))  | + C ` ` [ ∵  1 + sin θ  = ( sin^2  θ/2  + cos^2   θ/2+ 2 sin  θ/2 cos  θ/2 ) = ( sin  θ/2 + cos  θ/2)^2 and cos   θ = cos ^2  θ/2   - sin^2  θ/2 ]` 

`= \sqrt2  In  | (( \text{sin} x/4 + \text{cos} x/4)^2  )/((\text{cos }x /4  - \text{sin} x /4 )  (\text{cos} x/4  + \text{sin}x/4 ))| + C `

 

 

`= \sqrt2  In  | { sin  x/4 + cos  x/4} / {cos  x/4  - sin  x/4} |` + C 

`= \sqrt2  In  |  {1 + tan  x/4 } /{1- tan  x/4}| + C `

`= \sqrt2  In  |   tan  (x/4 + x/4) |+ C `

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 2 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×