मराठी

∫ Sin 4 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^4 2x\ dx\]
बेरीज

उत्तर

\[\int \sin^4 \text{ 2x dx }\]
\[ \Rightarrow \int \left( \sin^2 2x \right)^2 dx\]
\[ \Rightarrow \int \left[ \frac{1 - \cos 4x}{2} \right]^2 dx\]
\[ \Rightarrow \frac{1}{4}\int \left( 1 - \cos 4x \right)^2 \]
\[ \Rightarrow \frac{1}{4}\int\left( 1 + \cos^2 4x - 2 \cos 4x \right)dx\]
\[ \Rightarrow \frac{1}{4}\int\left[ 1 + \left( \frac{1 + \cos 8x}{2} \right) - 2 \cos 4x \right]dx\]
\[ \Rightarrow \frac{1}{4}\int\left[ \frac{3}{2} + \frac{\cos 8x}{2} - 2 \cos 4x \right]dx\]
\[ \Rightarrow \frac{1}{4}\left[ \frac{3x}{2} + \frac{\sin 8x}{16} - \frac{2 \sin 4x}{4} \right] + C\]
\[ \Rightarrow \frac{3x}{8} + \frac{\sin 8x}{64} - \frac{\sin 4x}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 11 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×