Advertisements
Advertisements
प्रश्न
` ∫ sec^6 x tan x dx `
बेरीज
उत्तर
` ∫ sec^6 x tan x dx `
=∫ sec6 x.sec x tan x dx
Let sec x = t
Let sec x = t
⇒ sec x tan x dx = dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
\[= \frac{t^6}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]