मराठी

∫ Tan 5 X Sec 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  tan^5 x   sec ^4 x   dx `
बेरीज

उत्तर

` ∫  tan^5 x   sec ^4 x   dx `

= ∫ tan5 x. sec2 x . sec2 x dx

= ∫ tan5 x (1 + tan2 x) sec2 x dx

Let tan x = t
⇒ sec2 x dx = dt

Now, ∫tan5x (1+tan2 x) sec2 x dx
= ∫ t5 (1 + t2) dt
= ∫ (t5 + t7) dt

\[= \frac{t^6}{6} + \frac{t^8}{8} + C\]
\[ = \frac{\tan^6 x}{6} + \frac{\tan^8 x}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.11 | Q 3 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×