Advertisements
Advertisements
प्रश्न
` ∫ tan^5 x sec ^4 x dx `
बेरीज
उत्तर
` ∫ tan^5 x sec ^4 x dx `
= ∫ tan5 x. sec2 x . sec2 x dx
= ∫ tan5 x (1 + tan2 x) sec2 x dx
Let tan x = t
⇒ sec2 x dx = dt
Now, ∫tan5x (1+tan2 x) sec2 x dx
= ∫ t5 (1 + t2) dt
= ∫ (t5 + t7) dt
\[= \frac{t^6}{6} + \frac{t^8}{8} + C\]
\[ = \frac{\tan^6 x}{6} + \frac{\tan^8 x}{8} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int x e^x \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]