Advertisements
Advertisements
प्रश्न
\[\int x e^x \text{ dx }\]
बेरीज
उत्तर
\[\int x e^x \text{ dx }\]
` "Taking x as the first function and e"^x " as the second function"`
\[ = x\int e^x dx - \int\left\{ \frac{d}{dx}\left( x \right)\int e^x dx \right\}dx\]
\[ = x e^x - \int1\left( e^x \right)dx\]
\[ = x e^x - e^x + C\]
\[ = \left( x - 1 \right) e^x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int \sin^5 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`