Advertisements
Advertisements
प्रश्न
उत्तर
\[\int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[\text{Let 5}^x = t\]
\[ \Rightarrow 5^x \log 5 = \frac{dt}{dx}\]
\[ \Rightarrow 5^x dx = \frac{dt}{\log 5}\]
\[Now, \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[ = \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[\text{Again let 5}^t = p\]
\[ \Rightarrow 5^t \log 5 = \frac{dp}{dt}\]
\[ \Rightarrow 5^t dt = \frac{dp}{\log 5}\]
\[Again \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[ = \int 5^p \cdot \frac{dp}{\left( \log 5 \right)^2}\]
\[ = \frac{5^p}{\left( \log 5 \right)^3} + C\]
\[ = \frac{5^{5^{5^x}}}{\left( \log 5 \right)^3} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then