मराठी

∫ 2 X + 3 √ X 2 + 4 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\left( 2x + 3 \right) dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 - 1 \right)}{\sqrt{x^2 + 4x + 5}}dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1}}\]
\[\text{ Consider, }\]
\[ x^2 + 4x + 5 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[ \therefore I = \int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} - \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 1} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 5} - \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 5} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 16 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int \log_{10} x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \tan^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×