मराठी

∫ E X ( Log X + 1 X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int\left( \log x + \frac{1}{x^2} \right) e^x dx\]

\[ = \int e^x \left( \log x + \frac{1}{x} - \frac{1}{x} + \frac{1}{x^2} \right)dx\]

\[ = \int e^x \left( \log x + \frac{1}{x} \right)dx + \int e^x \left( - \frac{1}{x} + \frac{1}{x^2} \right)dx\]

\[\begin{array} "let \text{  e}^x \log x = t \\ Diff\ both\ sides\ \\ \left( e^x \log x + e^x \frac{1}{x} \right)dx = dt \end{array}\begin{array} |"let  \text{ e}^x \left( - \frac{1}{x} \right) = p \\ Diff\ both\ sides\ \\ \left( e^x \frac{- 1}{x} + e^x \frac{1}{x^2} \right)dx = dp\end{array}\]

\[ \therefore I = \int dt + \int dp\]

\[ = t + p + C\]

\[ = e^x \log x + e^x \frac{- 1}{x} + C\]

\[ = e^x \left( \log x - \frac{1}{x} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 16 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×