Advertisements
Advertisements
प्रश्न
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
बेरीज
उत्तर
\[\int\left( \sec^2 x \cdot \cos^2 2x \right)dx\]
\[ = \int \sec^2 x \times \left( 2 \cos^2 x - 1 \right)^2 dx\]
\[ = \int \sec^2 x \left[ 4 \cos^4 x - 4 \cos^2 x + 1 \right]dx\]
\[ \Rightarrow \int\left( 4 \cos^2 x - 4 + \sec^2 x \right)dx\]
\[ = 4\int \cos^2 x \text{ dx } + \int \sec^2 x \text{ dx }- 4\int dx\]
\[ \Rightarrow 4\int\left( \frac{1 + \cos 2x}{2} \right)dx + \int \sec^2 x - 4\int dx\]
\[ \Rightarrow 2 \left[ x + \frac{\sin 2x}{2} \right] + \tan x - 4x + C\]
\[ \Rightarrow \sin 2x + \tan x - 2x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{1}{1 - \cos 2x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]