मराठी

∫ 1 √ ( X − α ) ( β − X ) D X , ( β > α ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
बेरीज

उत्तर

\[\text{Let I } = \int\frac{dx}{\sqrt{\left( x - \alpha \right) \left( \beta - x \right)}}\]

\[ = \int\frac{dx}{\sqrt{\  β x - x^2 -  αβ+ α x }}\]

\[ = \int\frac{dx}{\sqrt{- x^2 + \left( \alpha + \beta \right) x - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \left( \frac{\alpha + \beta}{2} \right)^2 - \left( \frac{\alpha + \beta}{2} \right)^2 + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left\{ x - \left( \frac{\alpha + \beta}{2} \right) \right\}^2 + \left( \frac{\alpha + \beta}{2} \right)^2 - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \frac{\left( \alpha + \beta \right)^2 - 4\alpha\beta}{4}}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \left( \frac{\alpha - \beta}{2} \right)^2}}\]

\[ = \int\frac{dx}{\sqrt{\left( \frac{\alpha - \beta}{2} \right)^2 - \left( x - \left( \frac{\alpha + \beta}{2} \right) \right)^2}}\]

\[ = \sin^{- 1} \left[ \frac{x - \left( \frac{\alpha + \beta}{2} \right)}{\frac{\alpha - \beta}{2}} \right] + C\]

\[ = \sin^{- 1} \left( \frac{2x - \alpha - \beta}{\alpha - \beta} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.17 | Q 5 | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \tan^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×