मराठी

∫ 1 ( X − 1 ) √ 2 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have, }\]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{2x + 3}}\]
\[\text{ Putting 2x} + 3 = t^2 \]
\[ \Rightarrow x = \frac{t^2 - 3}{2}\]
\[\text{ Diff both sides}\]
\[dx = t \text{ dt}\]
\[ \therefore I = \int \frac{t dt}{\left[ \frac{t^2 - 3}{2} - 1 \right]t}\]
\[ = \int\frac{2 \text{ dt }}{t^2 - 3 - 2}\]
\[ = \frac{2\text{ dt}}{t^2 - 5}\]
\[ = 2\int\frac{dt}{t^2 - \left( \sqrt{5} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{5}}\text{ log } \left| \frac{t - \sqrt{5}}{t + \sqrt{5}} \right| + C\]
\[ = \frac{1}{\sqrt{5}}\text{ log }\left| \frac{\sqrt{\text{ 2x + 3}} - \sqrt{5}}{\sqrt{2x + 3} + \sqrt{5}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 2 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×