मराठी

∫ X + 1 ( X − 1 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx }\]
\[\text{ Putting  x }+ 2 = t^2 \]
\[ \Rightarrow x = t^2 - 2\]
\[\text{ Diff both sides }
\]
\[dx = 2t \text{ dt }\]
\[I = \int \frac{\left( t^2 - 2 + 1 \right)2t \text{ dt }}{\left( t^2 - 2 - 1 \right)t}\]
\[ = 2\int \left( \frac{t^2 - 1}{t^2 - 3} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 3 + 2}{t^2 - 3} \right)dt\]
\[ = 2\int \left( \frac{t^2 - 3}{t^2 - 3} \right)dt + 4\int\frac{dt}{t^2 - 3}\]
\[ = 2\int dt + 4\int\frac{dt}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2t + 4 \times \frac{1}{2\sqrt{3}}\text{ log } \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = 2\sqrt{x + 2} + \frac{2}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 3 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x e^x \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×