Advertisements
Advertisements
प्रश्न
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`
बेरीज
उत्तर
Put `cos^2x` = t ⇒ `−2cosxsinxdx` = dt ⇒ `sin2xdx = -dt`
The given integral = `- int (dt)/sqrt(3^2 - t^2) = - sin^(-1) t/3 + c = - sin^(-1) (cos^2x)/3 + c`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x \cos^2 x\ dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]