Advertisements
Advertisements
प्रश्न
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
बेरीज
उत्तर
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right)dx\]
\[ = \int \sin^{- 1} \left( \sin 2 x \right)dx \left[ \therefore \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \right]\]
= 2 ∫ x dx
\[ = 2 \left( \frac{x^2}{2} \right) + C\]
\[ = x^2 + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x \cos^2 x\ dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`