Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
बेरीज
उत्तर
` ∫ sec^2 x /{1- tan^2 x }` dx
\[\text{let }\tan x = t\]
\[ \Rightarrow \sec^2 \text{ x dx }= dt\]
Now, ` ∫ sec^2 x /{1- tan^2 x }` dx
\[ = \int\frac{dt}{1 - t^2}\]
\[ = \frac{1}{2} \text{ log } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \frac{1 + \tan x}{1 - \tan x} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]