मराठी

∫ 5 X ( X + 1 ) ( X 2 − 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
बेरीज

उत्तर

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)}dx\]
\[\text{Let }\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}\]
\[ \Rightarrow 5x = A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)...........(1)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times 2 = B \left( 2 + 1 \right) \left( 2 + 2 \right)\]
\[ \Rightarrow B = \frac{10}{3 \times 4}\]
\[ = \frac{5}{6}\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times - 2 = C \left( - 2 + 1 \right) \left( - 2 - 2 \right)\]
\[ \Rightarrow \frac{- 10}{- 1 \times - 4} = C\]
\[ \Rightarrow C = \frac{- 5}{2}\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 5 = A \left( - 1 - 2 \right) \left( - 1 + 2 \right)\]
\[ \Rightarrow \frac{- 5}{- 3} = A\]
\[ \Rightarrow A = \frac{5}{3}\]
\[ \therefore \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{3} \times \frac{1}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{2 \left( x + 2 \right)}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{6} \times \frac{2}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{6} \left( \frac{3}{x + 2} \right)\]
\[ \therefore \int\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}dx = \frac{5}{6}\int\frac{2}{x + 1} dx + \frac{5}{6}\int\frac{1}{x - 2}dx - \frac{5}{6}\int\frac{3}{x + 2} dx\]
\[ = \frac{5}{6}\left[ 2 \ln \left| x + 1 \right| + \ln \left| x - 2 \right| - 3 \ln \left| x + 2 \right| \right] + C\]
\[ = \frac{5}{6} \left[ \ln \left| x + 1 \right|^2 + \ln \left| x - 2 \right| - \ln \left| x + 2 \right|^3 \right] + C\]
\[ = \frac{5}{6} \ln \left| \frac{\left( x + 1 \right)^2 \left( x - 2 \right)}{\left( x + 2 \right)^3} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 7 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×