मराठी

∫ 1 X ( X − 2 ) ( X − 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
बेरीज

उत्तर

\[\int\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)}dx\]

\[\text{Let }\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x - 4}\]

\[ \Rightarrow \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right)\left( x - 4 \right) + Cx \cdot \left( x - 2 \right)}{x\left( x - 2 \right)\left( x - 4 \right)}\]

\[ \Rightarrow 1 = A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right) \cdot \left( x - 4 \right) + Cx . \left( x - 2 \right) ...........(1)\]

\[\text{Putting }x = 0\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A\left( 0 - 2 \right)\left( 0 - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow \frac{1}{8} = A\]

\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A \times 0 + B\left( 2 \right)\left( 2 - 4 \right) + C \times 2 \times 0\]

\[ \Rightarrow B = - \frac{1}{4}\]

\[\text{Putting }\left( x - 4 \right) = 0\text{ or }x = 4\text{ in eq (1)}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \cdot 4\left( 4 - 2 \right)\]

\[ \Rightarrow C = \frac{1}{8}\]

\[ \therefore \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8x} - \frac{1}{4\left( x - 2 \right)} + \frac{1}{8\left( x - 4 \right)}\]

\[ \Rightarrow \int\frac{dx}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{4}\int\frac{1}{x - 2}dx + \frac{1}{8}\int\frac{1}{x - 4}dx\]

\[ = \frac{1}{8} \ln \left| x \right| - \frac{1}{4} \ln \left| x - 2 \right| + \frac{1}{8} \ln \left| x - 4 \right| + C\]

\[ = \frac{1}{8}\left( \ln \left| x \right| + \ln \left| x - 4 \right| - 2 \ln \left| x - 2 \right| \right) + C\]

\[ = \frac{1}{8}\left[ \ln \left| \frac{x\left( x - 4 \right)}{\left( x - 2 \right)^2} \right| \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 2 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×