Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
बेरीज
उत्तर
\[\text{ Let I } = \int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right)dx\]
\[ = \int e^x \left[ \cot x - {cosec}^2 x \right]dx\]
\[\text{ Here}, f(x) = \cot x\]
\[ \Rightarrow f'(x) = - {cosec}^2 x\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \cot x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \left( \cot x - {cosec}^2 x \right)dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \cot x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ tan^5 x sec ^4 x dx `
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .