मराठी

∫ X − 1 3 X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x - 1}{3 x^2 - 4x + 3} \right)dx\]
\[x - 1 = A\frac{d}{dx}\left( 3 x^2 - 4x + 3 \right) + B\]
\[x - 1 = A \left( 6x - 4 \right) + B\]
\[x - 1 = \left( 6 A \right) x + B - 4 A\]

Comparing the Coefficients of like powers of x

\[\text{6 } A = 1\]
\[A = \frac{1}{6}\]
\[B - \text{ 4 A }= - 1\]
\[B - 4 \times \frac{1}{6} = - 1\]
\[B = - 1 + \frac{2}{3}\]
\[B = \frac{1}{3}\]

\[Now, \int\frac{\left( x - 1 \right) dx}{3 x^2 - 4x + 3}\]
\[ = \int\left[ \frac{\frac{1}{6}\left( 6x - 4 \right) + \frac{1}{3}}{3 x^2 - 4x + 3} \right]dx\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{3}\int\frac{dx}{3 x^2 - 4x + 3}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + \left( \frac{2}{3} \right)^2 \left( \frac{2}{3} \right)^2 + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 13} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 + \left( \frac{\sqrt{5}}{3} \right)^2}\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{9} \times \frac{3}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{x^{- \frac{2}{3}}}{\frac{\sqrt{5}}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{3 x - 2}{\sqrt{5}} \right) + C\]
\[ = \frac{1}{6} \text{ log }\left| 3 x^2 - 4x + 3 \right| + \frac{\sqrt{5}}{15} \text{ tan }^{- 1} \left( \frac{3x - 2}{\sqrt{5}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 5 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×