हिंदी

∫ X − 1 3 X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
योग

उत्तर

\[\int\left( \frac{x - 1}{3 x^2 - 4x + 3} \right)dx\]
\[x - 1 = A\frac{d}{dx}\left( 3 x^2 - 4x + 3 \right) + B\]
\[x - 1 = A \left( 6x - 4 \right) + B\]
\[x - 1 = \left( 6 A \right) x + B - 4 A\]

Comparing the Coefficients of like powers of x

\[\text{6 } A = 1\]
\[A = \frac{1}{6}\]
\[B - \text{ 4 A }= - 1\]
\[B - 4 \times \frac{1}{6} = - 1\]
\[B = - 1 + \frac{2}{3}\]
\[B = \frac{1}{3}\]

\[Now, \int\frac{\left( x - 1 \right) dx}{3 x^2 - 4x + 3}\]
\[ = \int\left[ \frac{\frac{1}{6}\left( 6x - 4 \right) + \frac{1}{3}}{3 x^2 - 4x + 3} \right]dx\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{3}\int\frac{dx}{3 x^2 - 4x + 3}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + \left( \frac{2}{3} \right)^2 \left( \frac{2}{3} \right)^2 + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 13} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 + \left( \frac{\sqrt{5}}{3} \right)^2}\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{9} \times \frac{3}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{x^{- \frac{2}{3}}}{\frac{\sqrt{5}}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{3 x - 2}{\sqrt{5}} \right) + C\]
\[ = \frac{1}{6} \text{ log }\left| 3 x^2 - 4x + 3 \right| + \frac{\sqrt{5}}{15} \text{ tan }^{- 1} \left( \frac{3x - 2}{\sqrt{5}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 5 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×