हिंदी

∫ X √ X 2 + a 2 + √ X 2 − a 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
योग

उत्तर

`∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[\text{Let x}^2 = t\]
\[ \Rightarrow 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{x dx }= \frac{dt}{2}\]
Now, `∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t + a^2} + \sqrt{t - a^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( \sqrt{t + a^2} + \sqrt{t - a^2} \right)} \times \frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}\]
\[ = \frac{1}{2}\int\frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( t + a^2 \right) - \left( t - a^2 \right)}dt\]
\[ = \frac{1}{4 a^2}\int \left( t + a^2 \right)^\frac{1}{2} dt - \frac{1}{4 a^2}\int \left( t - a^2 \right)^\frac{1}{2} dt\]
\[ = \frac{1}{4 a^2}\left[ \frac{\left( t + a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4 a^2}\left[ \frac{\left( t - a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( t + a^2 \right)^\frac{3}{2} - \left( t - a^2 \right)^\frac{3}{2} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( x^2 + a^2 \right)^\frac{3}{2} - \left( x^2 - a^2 \right)^\frac{3}{2} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 55 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \cos x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×