Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{\sin 2x}{\sin^4 x + \cos^4 x}dx\]
\[ = \int\frac{2 \text{ sin x }\cdot \text{ cos x dx}}{\sin^4 x + \cos^4 x}\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow \int\frac{2 \frac{\text{ sin x }\cdot \text{ cos x}}{\cos^4 x}dx}{1 + \tan^4 x}\]
\[ \Rightarrow \int\frac{2 \tan x \cdot \text{ sec}^2 x dx}{1 + \left( \tan^2 x \right)^2}\]
\[\text{ Putting tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \cdot \text{ sec}^2 \text{ x dx}\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} t + C\]
\[ = \tan^{- 1} \left( \text{ tan}^2 x \right) + C......... \left[ \because t = \tan {}^2 x \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int \sec^4 x\ dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]