हिंदी

∫ Sin 2 X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\sin 2x}{\sin^4 x + \cos^4 x}dx\]
\[ = \int\frac{2 \text{ sin  x  }\cdot \text{ cos  x  dx}}{\sin^4 x + \cos^4 x}\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow \int\frac{2 \frac{\text{ sin  x }\cdot \text{ cos  x}}{\cos^4 x}dx}{1 + \tan^4 x}\]
\[ \Rightarrow \int\frac{2 \tan x \cdot \text{ sec}^2 x dx}{1 + \left( \tan^2 x \right)^2}\]
\[\text{ Putting  tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \cdot \text{ sec}^2 \text{  x  dx}\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} t + C\]
\[ = \tan^{- 1} \left( \text{ tan}^2 x \right) + C......... \left[ \because t = \tan {}^2 x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 41 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x e^x \text{ dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×