हिंदी

∫ Sec 2 X √ 4 + Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
योग

उत्तर

 

` ∫   { sec^2 x  dx}/{\sqrt{4 + tan^2 x}} `


\`text{ let } tan  x }= t `
\[ \Rightarrow \sec^2 x dx = dt\]
Now, ` ∫   { sec^2 x  dx}/{\sqrt{4 + tan^2 x}} `
\[ = \int\frac{dt}{\sqrt{2^2 + t^2}}\]
\[ = \text{ log } \left| t + \sqrt{4 + t^2} \right| + C\]
\[ = \text{ log }\left| \text{ tan x }+ \sqrt{4 + \tan^2 x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 2 | पृष्ठ ९८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`∫     cos ^4  2x   dx `


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×