हिंदी

∫ ( 2 X + 3 ) √ 4 X 2 + 5 X + 6 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
योग

उत्तर

\[ \text{ Let I} = \int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\text{ let 2x + 3 = A}\frac{d}{dx}\left( 4 x^2 + 5x + 6 \right) + B\]
\[ \Rightarrow 2x + 3 = A \left( 8x + 5 \right) + B . . . (1)\]
\[\text{By equating coefficients of like terms we get}, \]
\[\text{ 2x = 8A x }\]
\[ \Rightarrow A = \frac{1}{4}\]
\[ \text{ and  5A + B = 3}\]
\[ \Rightarrow \frac{5}{4} + B = 3\]
\[ \Rightarrow B = 3 - \frac{5}{4}\]
\[ = \frac{7}{4}\]
\[\text{Thus, by substituting the values of A and B in eq (1) we ge}t\]
\[I = \int \left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \int\left[ \frac{1}{4}\left( 8x + 5 \right) + \frac{7}{4} \right] \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} dx + \frac{7}{4} \int\sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[Putting\ 4 x^2 + 5x + 6 = \text{    t   in the first integral}\]
\[ \Rightarrow \left( 8x + 5 \right) \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int\sqrt{t} \cdot dt + \frac{7 \times 2}{4}\int\sqrt{x^2 + \frac{5x}{4} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4}\int t^\frac{1}{2} \cdot dt + \frac{7}{2}\int\sqrt{x^2 - \frac{5x}{4} + \left( \frac{5}{8} \right)^2 - \left( \frac{5}{8} \right)^2 + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 - \frac{25}{64} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \times \frac{2}{3} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \frac{- 25 + 96}{64}}\]
\[ = \frac{1}{6} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2}\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2}\left[ \frac{x + \frac{5}{8}}{2}\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} + \frac{71}{64 \times 2} \text{ ln} \left| x + \frac{5}{8} + \sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} \right| \right] + C ................\left[ \because \int\sqrt{a^2 + x^2} \text{ dx}= \frac{1}{2}x\sqrt{a^2 + x^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2} \frac{\left( 8x + 5 \right)}{16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{71 \times 7}{2 \times 128} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7 \times 2 \left( 8x + 5 \right)}{4 \times 16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right) \sqrt{4 x^2 + 5x + 6} + \frac{7}{64} \left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} + \frac{497}{256} \text{ ln }\left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{4 x^2 + 5x + 6}{6} + \frac{7}{64} \left( 8x + 5 \right) \right] + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{128 x^2 + 328x + 297}{192} \right] + \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 90 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×