हिंदी

∫ 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( 1 + x^2 \right) \sqrt{1 - x^2}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\left( 1 + \frac{1}{t^2} \right) \sqrt{1 - \frac{1}{t^2}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{\left( t^2 + 1 \right)}{t^2} \frac{\sqrt{t^2 - 1}}{t}}\]
\[ = - \int \frac{t dt}{\left( t^2 + 1 \right) \sqrt{t^2 - 1}}\]
\[\text{ Again  Putting t}^2 - 1 = u^2 \]
\[ \Rightarrow 2t \text{ dt} = 2u \text{ du}\]
\[ \Rightarrow t \text{ dt} = u \text{ du }\]
\[ \therefore I = - \int \frac{u \text{ du}}{\left( u^2 + 2 \right)u}\]
\[ = - \int \frac{du}{u^2 + \left( \sqrt{2} \right)^2}\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{u}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\sqrt{t^2 - 1}}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{\frac{1}{x^2} - 1}{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{1 - x^2}{2 x^2}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 12 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^3}{x - 2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 + \tan x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×