हिंदी

∫ X 2 + X + 1 X 2 − X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
योग

उत्तर

\[\int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[\frac{x^2 + x + 1}{x^2 - x} = 1 + \frac{2x + 1}{x^2 - x}\]
\[ \therefore \int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[ = \int\left( 1 + \frac{2x + 1}{x^2 - x} \right)dx\]
\[ = \int1 + \left( \frac{2x - 1 + 2}{x^2 - x} \right)dx\]
 ` =  ∫   dx + ∫   {(2x -1 ) dx }/ {x^2 -x } +  ∫  { 2  dx } / { x^2 - x + (1/2)^2 - (1/2) ^2} `
\[ = ∫ dx + \int\frac{\left( 2x - 1 \right) dx}{x^2 - x} + 2\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \times \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right|\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \text{  log } \left| \frac{x - 1}{x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 1 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×