हिंदी

∫ X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin^3 x\ dx\]
योग

उत्तर

Let I =\[\int x \text{ sin}^3  \text{ x   dx }\]

sin (3A) = 3 sin A – 4 sin3 A
\[\sin^3 A = \frac{1}{4}\left[ 3 \sin A - \sin 3A \right]\]
\[ \therefore I = \frac{1}{4}\int x . \left( 3 \sin x - \sin 3x \right)dx\]
\[ = \frac{3}{4}\int x_I . \sin_{II} \text{  x dx} - \frac{1}{4}\int x_I {. \sin_{II} \left( 3x \right)} \text{ dx }\]
\[ = \frac{3}{4}\left[ x\left( - \cos x \right) - \int1 . \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x\left( - \frac{\cos 3x}{3} \right) - \int1 . \left( - \frac{\cos 3x}{3} \right)dx \right]\]
\[ = - \frac{3x \cos x}{4} + \frac{3}{4}\sin x + \frac{x \cos 3x}{12} - \frac{1}{36}\sin 3x + C\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 54 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×