Advertisements
Advertisements
प्रश्न
\[\int x \sin^3 x\ dx\]
योग
उत्तर
Let I =\[\int x \text{ sin}^3 \text{ x dx }\]
sin (3A) = 3 sin A – 4 sin3 A
\[\sin^3 A = \frac{1}{4}\left[ 3 \sin A - \sin 3A \right]\]
\[ \therefore I = \frac{1}{4}\int x . \left( 3 \sin x - \sin 3x \right)dx\]
\[ = \frac{3}{4}\int x_I . \sin_{II} \text{ x dx} - \frac{1}{4}\int x_I {. \sin_{II} \left( 3x \right)} \text{ dx }\]
\[ = \frac{3}{4}\left[ x\left( - \cos x \right) - \int1 . \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x\left( - \frac{\cos 3x}{3} \right) - \int1 . \left( - \frac{\cos 3x}{3} \right)dx \right]\]
\[ = - \frac{3x \cos x}{4} + \frac{3}{4}\sin x + \frac{x \cos 3x}{12} - \frac{1}{36}\sin 3x + C\]
\[ \therefore I = \frac{1}{4}\int x . \left( 3 \sin x - \sin 3x \right)dx\]
\[ = \frac{3}{4}\int x_I . \sin_{II} \text{ x dx} - \frac{1}{4}\int x_I {. \sin_{II} \left( 3x \right)} \text{ dx }\]
\[ = \frac{3}{4}\left[ x\left( - \cos x \right) - \int1 . \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x\left( - \frac{\cos 3x}{3} \right) - \int1 . \left( - \frac{\cos 3x}{3} \right)dx \right]\]
\[ = - \frac{3x \cos x}{4} + \frac{3}{4}\sin x + \frac{x \cos 3x}{12} - \frac{1}{36}\sin 3x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int \log_{10} x\ dx\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]