Advertisements
Advertisements
प्रश्न
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
योग
उत्तर
\[\text{ Let I }= \int \sin^3 x \cdot \cos^4 x\ dx\]
\[ = \int \sin^2 x \cdot \sin x \cdot \cos^4 x\ dx\]
\[ = \int\left( 1 - \cos^2 x \right) \cdot \cos^4 x \cdot \sin x\ dx \]
\[ = \int\left( \cos^4 x - \cos^6 x \right) \cdot \sin x\ dx\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \sin x\ dx = dt\]
\[ \Rightarrow \sin x\ dx = - dt\]
\[ \therefore I = - \int\left( t^4 - t^6 \right)dt\]
\[ = \int\left( t^6 - t^4 \right)dt\]
\[ = \frac{t^7}{7} - \frac{t^5}{5} + C\]
\[ = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + C......... \left[ \because t = \cos x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]