We have,I=∫sin2xdx(1+sinx)(2+sinx)=∫2sinxcosxdx(1+sinx)(2+sinx)Putting sin x = t
⇒cosxdx=dt∴I=∫2tdt(1+t)(2+t)=2∫tdt(1+t)(2+t)Let Let t(1+t)(2+t)=A1+t+B2+t⇒t(1+t)(2+t)=A(2+t)+B(1+t)(1+t)(2+t)⇒t=A(2+t)+B(1+t)Putting 2 + t = 0
⇒t=−2−2=A×0+B(−2+1)⇒−2=B(−1)⇒B=2Let Let t+1=0t=−1⇒−1=A(−1+2)+B×0A=−1∴I=2∫(−1t+1+2t+2)dt=2[−log|t+1|+2log|t+2|]+C=4log|t+2|−2log|t+1|+C=log|(t+2)4(t+1)2|+C=log|(sinx+2)4(sinx+1)2|+C