Advertisements
Advertisements
प्रश्न
उत्तर
∫ sec4 2x dx
= ∫ sec2 2x . sec2 2x dx
= ∫ (1 + tan2 2x) . sec2 2x dx
Let tan 2x = t
⇒ sec2 2x . 2 dx = dt
\[\Rightarrow \sec^2 2x . dx = \frac{dt}{2}\]
\[Now, \int\left( 1 + \tan^2 2x \right) . \sec^2 2x \text{ dx }\]
\[ = \frac{1}{2}\int\left( 1 + t^2 \right) dt\]
\[ = \frac{1}{2}\left[ t + \frac{t^3}{3} \right] + C\]
\[ = \frac{t}{2} + \frac{t^3}{6} + C\]
\[ = \frac{\tan \left( \text{ 2x } \right)}{2} + \frac{\tan^3 \left( \text{ 2x } \right)}{6} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int {cosec}^4 2x\ dx\]