हिंदी

∫ Sec 4 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sec^4 2x \text{ dx }\]
योग

उत्तर

\[\int \sec^4 2x \text{ dx }\]

∫ sec4 2x dx
=​ ∫ sec2 2x . sec2 2x dx
= ∫ (1 + tan2 2x) . sec2 2x  dx 

Let tan 2x = t
⇒ sec2 2x . 2 dx = dt

\[\Rightarrow \sec^2 2x . dx = \frac{dt}{2}\]
\[Now, \int\left( 1 + \tan^2 2x \right) . \sec^2 2x \text{ dx }\]
\[ = \frac{1}{2}\int\left( 1 + t^2 \right) dt\]
\[ = \frac{1}{2}\left[ t + \frac{t^3}{3} \right] + C\]
\[ = \frac{t}{2} + \frac{t^3}{6} + C\]
\[ = \frac{\tan \left( \text{ 2x } \right)}{2} + \frac{\tan^3 \left( \text{ 2x } \right)}{6} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.11 | Q 7 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \cos x^4 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int {cosec}^4 2x\ dx\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×