Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
योग
उत्तर
\[\text{Let I }= \int\frac{\ secx \ tanx}{3 \sec x + 5}dx\]
\[\text{Putting }\sec x = t \]
\[ \Rightarrow \frac{dt}{dx} = \sec x \tan x\]
\[ \Rightarrow dt = \text{sec x tan x dx}\]
\[ \therefore I = \int\frac{dt}{3t + 5}\]
\[ = \frac{1}{3} \text{ln }\left| 3t + 5 \right| + C\]
\[ = \frac{1}{3} \text{ln} \left| 3 \sec x + 5 \right| + C \left[ \because t = \sec x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ tan^5 x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x^3 \cos x^2 dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]