हिंदी

∫ Tan 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫      tan^5    x   dx `

योग

उत्तर

∫ tan5 x dx
= ∫ tan4 x. tan x dx
= ∫(sec2 x – 1)2 . tan x dx

= ​​∫ (sec4 x – 2 sec2 x + 1) tan x dx
= ∫ tan x . sec4 x dx – 2 ​∫ sec2 x . tan x dx+  ​∫ ta
n x dx

= ∫ sec2 x. sec2 x . tan x dx – 2 ​∫ tan x sec2 x dx + ​∫ tan x dx
= ∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx + ​∫ tan x dx

Let I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
And I2=∫ tan x dx

∫ tan5 x dx=I1 + I2
Now, I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
Let tan x = t

⇒ sec2x dx = dt
I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
∫ (1 + t2) . t. dt – 2 ​∫ t. dt

∫ (t + t3) dt – 2 ​∫ t dt 

\[\frac{t^2}{2} + \frac{t^4}{4} - \frac{2 t^2}{2} + C_1 \]

\[ = \frac{t^4}{4} - \frac{t^2}{2} + C_1 \]

\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + C_1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.11 | Q 5 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×