हिंदी

∫ √ E X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt {e^x- 1}  \text{dx}\] 
योग

उत्तर

\[\int\sqrt{e^x - 1}dx\]
\[\text{Let e}^x - 1 = t^2 \]
\[ \Rightarrow e^x = t^2 + 1\]
\[ e^x = \text{2t }\frac{dt}{dx}\]
`dx = {2t   dt}/{e^x} `
`dx = {2t   dt}/{t^2 + 1} `
\[Now, \int\sqrt{e^x - 1}dx\]
`  = ∫   {  t  . 2t   dt}/{t^2 + 1} `
`  =2  ∫   {  t^2   dt}/{t^2 + 1} `
\[ = 2\ ∫ \left( \frac{t^2 + 1 - 1}{t^2 + 1} \right)dt \]
\[ = 2\ ∫ dt - 2\int\frac{dt}{t^2 + 1}\]
\[ = 2t - 2 \tan^{- 1} \left( t \right) + C\]
\[ = 2\sqrt{e^x - 1} - 2 \tan^{- 1} \left( \sqrt{e^x - 1} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 66 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x \cos x\ dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×