Advertisements
Advertisements
प्रश्न
\[\int\sqrt {e^x- 1} \text{dx}\]
योग
उत्तर
\[\int\sqrt{e^x - 1}dx\]
\[\text{Let e}^x - 1 = t^2 \]
\[ \Rightarrow e^x = t^2 + 1\]
\[ e^x = \text{2t }\frac{dt}{dx}\]
`dx = {2t dt}/{e^x} `
`dx = {2t dt}/{t^2 + 1} `
\[Now, \int\sqrt{e^x - 1}dx\]
` = ∫ { t . 2t dt}/{t^2 + 1} `
` =2 ∫ { t^2 dt}/{t^2 + 1} `
\[ = 2\ ∫ \left( \frac{t^2 + 1 - 1}{t^2 + 1} \right)dt \]
\[ = 2\ ∫ dt - 2\int\frac{dt}{t^2 + 1}\]
\[ = 2t - 2 \tan^{- 1} \left( t \right) + C\]
\[ = 2\sqrt{e^x - 1} - 2 \tan^{- 1} \left( \sqrt{e^x - 1} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int x \cos x\ dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]