Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
विकल्प
tan 7x + C
- \[\frac{\tan^7 x}{7} + C\]
- \[\frac{\tan 7x}{7} + C\]
sec7 x + C
MCQ
उत्तर
\[\frac{\tan^7 x}{7} + C\]
\[\text{Let }I = \int\frac{\sin^6 x}{\cos^8 x}dx\]
\[ = \int\frac{\sin^6 x}{\cos^6 x} \times \frac{1}{\cos^2 x}dx\]
\[ = \int \tan^6 x \cdot \sec^2 x dx\]
\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int t^6 \cdot dt\]
\[ = \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C ............\left( \because t = \tan x \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \tan x + \cot x \right)^2 dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`