Advertisements
Advertisements
प्रश्न
\[\int \left( \tan x + \cot x \right)^2 dx\]
योग
उत्तर
\[\int \left( \tan x + \cot x \right)^2 \]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right)dx\]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \right)dx\]
\[ = \int\left[ \left( \sec^2 x - 1 \right) + \left( {cosec}^2 x - 1 \right) + 2 \right]dx\]
\[ = \int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ = \tan x - \cot x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
` ∫ cos mx cos nx dx `
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]