Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\text{ cos } \left( x - a \right) \cdot \text{ cos} \left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( a - b \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left[ \left( x - b \right) - \left( x - a \right) \right]}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right) - \text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} - \frac{\text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \text{ tan }\left( x - b \right) - \text{ tan }\left( x - a \right) \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\text{ tan }\left( x - b \right) dx - \int\text{ tan } \left( x - a \right) dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ sec }\left( x - b \right) \right| - \text{ ln } \left| \text{ sec }\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ cos }\left( x - a \right) \right| - \text{ ln }\left| \text{ cos}\left( x - b \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \frac{\text{ cos}\left( x - a \right)}{\text{ cos}\left( x - b \right)} \right| \right] + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ tan^5 x dx `
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int {cosec}^4 2x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]