हिंदी

∫ 1 Cos ( X − a ) Cos ( X − B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
योग

उत्तर

\[\int\frac{1}{\text{ cos } \left( x - a \right) \cdot \text{ cos} \left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( a - b \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left[ \left( x - b \right) - \left( x - a \right) \right]}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right) - \text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} - \frac{\text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \text{ tan }\left( x - b \right) - \text{ tan }\left( x - a \right) \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\text{ tan }\left( x - b \right) dx - \int\text{ tan } \left( x - a \right) dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ sec }\left( x - b \right) \right| - \text{ ln } \left| \text{ sec }\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ cos }\left( x - a \right) \right| - \text{ ln }\left| \text{ cos}\left( x - b \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \frac{\text{ cos}\left( x - a \right)}{\text{ cos}\left( x - b \right)} \right| \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 25 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×